1. Standardissimo?
2. Constraints on new physics: MSSM
3. Further probe of the Higgs sector
4. High precision measurements: Dγγ?
5. Conclusion
1. Standardissimo?

The Higgs discovery in July 2012: a triumph for high-energy physics.

A very non-trivial check of the SM: test at the quantum/permile level:
- constraints from data: \(M_H = 92^{+34}_{-26} \text{ GeV} \lesssim 160 \text{ GeV at 95\% CL} \)
- experimentally found to be: \(M_H = 125.1 \pm 0.24 \text{ GeV} \) (ie within 1\(\sigma\).)

In addition, it looks as it has the properties of the SM Higgs state:

The triumph of the SM model of particle physics or Standarissimo?!
1. Standardissimo?

We have a theory for the strong+electroweak forces, the SM, that is:
- a relativistic quantum field theory based on a gauge symmetry,
- renormalisable as proved by ’t Hooft and Veltman for sEWSB,
- unitary as we have now a Higgs and its mass is rather small,
- perturbative up to the Planck scale as again the Higgs is light,
- leads to a (meta)stable electroweak vacuum up to high scales,
- compatible with (almost) all precision data available to date...

Is SM the “theory of everything” and should we be satisfied with it?
No! Low energy manifestation of a fundamental theory that solves:
- “Esthetical” problems with eg multiple and arbitrary parameters; gauge coupling unification: $3 \neq g_i$ which do not meet a high scale.
- “Experimental” problems as it does not explain all seen phenomena: \(\nu \) masses/mixing, dark matter, baryon asymmetry in the universe

Note: $SO(10)$ at intermediate $Q = 10^{11}$ GeV and axions cure these pbs.
- “Theory” (or consistency) problem: the hierarchy/naturalness pbs. $\Delta M^2_H \propto \Lambda^2 \approx (10^{18} \text{ GeV})^2$: M_H not stable against high scales.

All these indicate that there is beyond the Standard Model!
1. Standardissimo?

Three main avenues for solving the hierarchy or naturalness problems

I. Compositeness/substructure:
 All particles are composite: Technicolor
 \[\Rightarrow \text{H bound state of two fermions} \]
 (no more spin–0 fundamental state).

II. Extra space–time dimensions
 where at least s=2 gravitons propagate.
 \[\Rightarrow \text{effective gravity scale } \Lambda \approx 1 \text{ TeV}. \]
 EWSB mechanism needed: H or not H!

III. Supersymmetry: doubling the world.
 – links s=\(\frac{1}{2} \) fermions to s=1 bosons,
 – links internal/space-time symmetries,
 – if made local, provides link to gravity,
 – natural \(\mu^2 < 0 \): radiative EWSB,
 \[\Rightarrow \text{sparticle loops cancel } \Lambda^2 \text{ behavior} \]
 extend EWSB sector: at least 2 doublets.
1. Standardissimo?

The problem is that:

A) we observe a Higgs with a mass of 125 GeV and no other Higgs:

\[\sigma \times BR \text{ rates compatible with those expected in the SM} \]

Fit of all LHC Higgs data \(\Rightarrow \) agreement at 15–30% level

Results from the LHC 7–8 TeV campaign already give us:

\[\mu_{\text{ATLAS}}^{\text{tot}} = 1.18 \pm 0.15 \]
\[\mu_{\text{CMS}}^{\text{tot}} = 1.00 \pm 0.14 \]

B) we do not observe any particle beyond those of SM with Higgs:

profound implications for most discussed BSM scenarios; they are in:

- “Mortuary”: Higgsless, 4th generation, fermio or gauge-phobic..
- “Hospital”: Technicolor, composite models (but some loopholes)
- “Trouble” and strongly constrained: extra-dimensions, SUSY, ...

As an example, let us see what it implies for SUSY and the MSSM.

Shanghai 02/07/2017

Higgs physics at LHC – A. Djouadi – p.5/24
2. Constraints on new physics: MSSM

In the MSSM we need 2 doublets of complex scalar fields H_1, H_2 (it is a 2HDM of type II but with SUSY constraints).

After EWSB, 3 dof for W_L^\pm, $Z_L \Rightarrow 5$ physical states: h, H, A, H^\pm.

2 free parameters at tree-level to describe Higgs pheno: $\tan \beta$, M_A:

$M_{h,H}^2 = \frac{1}{2} \left\{ M_A^2 + M_Z^2 \mp \left[(M_A^2 + M_Z^2)^2 - 4M_A^2 M_Z^2 \cos^2 2\beta \right]^{1/2} \right\}$

$M_{H^\pm}^2 = M_A^2 + M_W^2$

$\tan 2\alpha = \frac{-(M_A^2 + M_Z^2) \sin 2\beta}{(M_Z^2 - M_A^2) \cos 2\beta} = \tan 2\beta \frac{M_A^2 + M_Z^2}{M_A^2 - M_Z^2} \left(-\frac{\pi}{2} \leq \alpha \leq 0 \right)$

$M_h \lesssim M_Z |\cos 2\beta| + RC \lesssim 130$ GeV, $M_H \approx M_A \approx M_{H^\pm} \lesssim M_{\text{EWSB}}$.

- Couplings of h, H to VV are suppressed; no AVV couplings (CP).
- For $\tan \beta \gg 1$: couplings to b (t) quarks enhanced (suppressed).

\[
\begin{array}{llll}
\Phi & g_\Phi \bar{uu} & g_\Phi \bar{dd} & g_\Phi VV \\
h & \frac{\cos \alpha}{\sin \beta} \rightarrow 1 & \frac{\sin \alpha}{\cos \beta} \rightarrow 1 & \sin(\beta - \alpha) \rightarrow 1 \\
H & \frac{\sin \alpha}{\sin \beta} \rightarrow 1/\tan \beta & \frac{\cos \alpha}{\cos \beta} \rightarrow \tan \beta & \cos(\beta - \alpha) \rightarrow 0 \\
A & 1/\tan \beta & \tan \beta & 0 \\
\end{array}
\]

Decoupling limit: MSSM Higgs sector reduces to SM with a light h.

Shanghai 02/07/2017

Higgs physics at LHC – A. Djouadi – p.6/24
2. Constraints on new physics: MSSM

There is first direct implication from the measurement $M_h = 125$ GeV

$$M_h^2 \xrightarrow{M_A \gg M_Z} M_Z^2 \cos^2 2\beta + \frac{3 \bar{m}_t^4}{2 \pi^2 v^2 \sin^2 \beta} \left[\log \frac{M_S^2}{\bar{m}_t^2} + \frac{X_t^2}{M_S^2} \left(1 - \frac{X_t^2}{12M_S^2} \right) \right] \simeq (125)^2$$

Arbey, Battaglia, AD, Mahmoudi, Quevillon (2012)

$M_{SUSY} \gtrsim 1$ TeV in general MSSM and higher in constrained models.

Shanghai 02/07/2017 Higgs physics at LHC – A. Djouadi – p.7/24
2. Constraints on new physics: MSSM

This is backed up by direct searches of SUSY particles at the LHC: the SUSY scale $M_{SUSY} \gtrsim \mathcal{O}(1 \text{ TeV})$ in most experimental searches.

⇒ ATLAS/CMS depressing tables

Shanghai 02/07/2017

Higgs physics at LHC — A. Djouadi — p.8/24
2. Constraints on new physics: MSSM

Also backed up indirectly by measurement of Higgs properties:
fits of the h couplings \(\Rightarrow \) constraints on MSSM \([M_A, \tan\beta]\) space:

\[
\text{hMSSM: } g_{h\bar{t}t} = \cos\alpha/\sin\beta, \quad g_{h\bar{b}b} = \cos\alpha/\sin\beta, \quad g_{hVV} = \sin(\beta - \alpha)
\]

AD, Quevillon, Maiani... 2013

Direct search for pp\(\rightarrow\)H,A

Shanghai 02/07/2017
3. Further probe of the Higgs sector

So is Particle Physics “closed” and we should all go home? No!

1) Fully probe the TeV scale that is relevant for hierarchy problem ⇒ continue to search for heavier Higgs bosons (and superparticles).
3. Further probe of the Higgs sector

Continue searches for exotic particles in all possible channels.

ATLAS Exotics Searches - 95% CL Exclusion

<table>
<thead>
<tr>
<th>Model</th>
<th>f</th>
<th>g</th>
<th>Jets</th>
<th>E_{miss}^{T}</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADO G_{a} + g, q</td>
<td>f</td>
<td>g</td>
<td>q, u</td>
<td>b, v</td>
<td>t, j</td>
</tr>
<tr>
<td>ADO non-resonant f</td>
<td>2.9</td>
<td>6.1</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>b, b</td>
</tr>
<tr>
<td>ADO OBR f</td>
<td>1.2</td>
<td>1.0</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>0.001</td>
</tr>
<tr>
<td>ADO ρ</td>
<td>1.2</td>
<td>1.0</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>0.001</td>
</tr>
<tr>
<td>ρ \rightarrow Z_{bb} multiplet</td>
<td>2.9</td>
<td>6.1</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>0.001</td>
</tr>
<tr>
<td>Res G_{a} \rightarrow f</td>
<td>2.9</td>
<td>6.1</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>0.001</td>
</tr>
<tr>
<td>Bulk G_{a} \rightarrow $W^{+}W^{-} \rightarrow q\bar{q}^{*}$</td>
<td>1.2</td>
<td>1.0</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>0.001</td>
</tr>
<tr>
<td>Bulk G_{a} \rightarrow $H^{+}H^{-} \rightarrow b\bar{b}$</td>
<td>4.9</td>
<td>13.3</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>0.001</td>
</tr>
<tr>
<td>ZUED / RPP</td>
<td>1.2</td>
<td>1.0</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>0.001</td>
</tr>
</tbody>
</table>

ATLAS Preliminary

$\int L \, dt = (3.2 - 20.3) \, fb^{-1}$

$\sqrt{s} = 8, 13 \, TeV$

<table>
<thead>
<tr>
<th>Model</th>
<th>f</th>
<th>g</th>
<th>Jets</th>
<th>E_{miss}^{T}</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADO G_{a} + g, q</td>
<td>f</td>
<td>g</td>
<td>q, u</td>
<td>b, v</td>
<td>t, j</td>
</tr>
<tr>
<td>ADO non-resonant f</td>
<td>2.9</td>
<td>6.1</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>b, b</td>
</tr>
<tr>
<td>ADO OBR f</td>
<td>1.2</td>
<td>1.0</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>0.001</td>
</tr>
<tr>
<td>ADO ρ</td>
<td>1.2</td>
<td>1.0</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>0.001</td>
</tr>
<tr>
<td>ρ \rightarrow Z_{bb} multiplet</td>
<td>2.9</td>
<td>6.1</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>0.001</td>
</tr>
<tr>
<td>Res G_{a} \rightarrow f</td>
<td>2.9</td>
<td>6.1</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>0.001</td>
</tr>
<tr>
<td>Bulk G_{a} \rightarrow $W^{+}W^{-} \rightarrow q\bar{q}^{*}$</td>
<td>1.2</td>
<td>1.0</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>0.001</td>
</tr>
<tr>
<td>Bulk G_{a} \rightarrow $H^{+}H^{-} \rightarrow b\bar{b}$</td>
<td>4.9</td>
<td>13.3</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>0.001</td>
</tr>
<tr>
<td>ZUED / RPP</td>
<td>1.2</td>
<td>1.0</td>
<td>Z_{bb}</td>
<td>Z_{bb}</td>
<td>0.001</td>
</tr>
</tbody>
</table>

ATLAS Preliminary

$\int L \, dt = (3.2 - 20.3) \, fb^{-1}$

$\sqrt{s} = 8, 13 \, TeV$

Shanghai 02/07/2017

Higgs physics at LHC – A. Djouadi – p.11/24

*Only a selection of the available mass limits on new states or phenomena is shown. Lower bounds are specified only when explicitly not excluded.

†Small-radius (large radius) jets are denoted by the jet label (j).
3. Further probe of the Higgs sector

The next question is then: “is Particle Physics closed”? Answer is no!

2) Need to check that H is indeed responsible of EWSB (SM-like?)

⇒ measure its fundamental properties in the most precise way:

- its mass and total decay width (invisible width from dark matter?),
- its spin–parity quantum numbers (CP violation for baryogenesis?),
- its couplings to fermions and gauge bosons and check if they are only proportional to particle masses (no new physics contributions?),
- its self-couplings to reconstruct V_S potential that makes EWSB.

Possible for $M_H \approx 125$ GeV as all production/decay channels useful.
3. Further probe of the Higgs sector

A check of spin–parity quantum numbers.

Spin: clear situation (no suspense) as the new state decays into $\gamma\gamma \Rightarrow$ not s=1 from Landau–Yang and s=2 (KK graviton?) unlikely..

CP numbers: CP-even, CP-odd, or mixture?

(more important issue: CPV in Higgs sector.) ATLAS and CMS MELA analyses for pure CP \Rightarrow pure CP-even favored at $\gtrsim 3\sigma$ level.

But problems with this (too simple) picture: pure CP–odd does not couple to VV@tree-level; in $H \rightarrow ZZ^*$ only CP-even part is projected out.

- **Direct probe**: via production/decays in extensions like C2HDM: Ex: Undoubtable signs of CP-violation in Higgs decays at HL-LHC combined searches of $h_i \rightarrow h_j Z$ and $h_i \rightarrow ZZ$ with $i, j = 1, 2, 3$.

- **Indirect probe**: g_{Hff} more democratic \Rightarrow fermionic decays.

ex: spin-correlations in $q\bar{q} \rightarrow HZ \rightarrow b\bar{b}ll$, $q\bar{q}/gg \rightarrow Ht\bar{t} \rightarrow b\bar{b}t\bar{t}$.

Need to be lucky or is very challenging even at the HL–LHC...

Shanghai 02/07/2017

Higgs physics at LHC

A. Djouadi

p.13/24
3. Further probe of the Higgs sector

Perform a much more precise measurement of the Higgs couplings \(\Rightarrow \) would allow a better sensitivity to new physics virtual effects.

- **In standard production+decay channels as** \(gg \rightarrow H \rightarrow ZZ, WW, \gamma\gamma \)
 Presently sensitivity is low in many cases as 2HDM of type I and II: still large theoretical+experimental errors of about 15–20% each

 - Falkowski et al., 1611.01112

- **In very rare decays that allow additional/unknown information:**
 - \(H \rightarrow \mu^+\mu^- \) to probe second generation fermion couplings
 - \(H \rightarrow \Upsilon\gamma \) to probe the sign of some fermionic couplings (here b’s).
 - \(H \rightarrow Z\gamma \) with information that is complementary to \(H \rightarrow \gamma\gamma \)

But will this be sufficient to probe BSM physics? (see discussion later)
3. Further probe of the Higgs sector

- **Total width**: $\Gamma_H = 4\text{MeV}$, too small to be resolved experimentally.
 - very loose bound from interference $gg\rightarrow ZZ$ (factor 2–5 at most).
 - no way to access it indirectly (via production rates) precisely.

- **Invisible width**: more accessible

Direct measurement of $H\rightarrow \text{inv}$
$q\bar{q} \rightarrow HZ$ with $Z \rightarrow ll$, $H \rightarrow \text{inv}$
similar E_T search in VBF mode and also in $gg\rightarrow \text{Higgs}+\text{jet}$...

Combined $HZ+VBF$ in CMS
$\text{BR}_{\text{inv}} \lesssim 50\% @ 95\% \text{CL}$
assuming a SM Higgs state
$10\% @ \text{HL-LHC}$ possible?

Indirect measurement of $H\rightarrow \text{inv}$
via Higgs BRs measurement: again accuracy of $O(10\%)$ at HL-LHC
but with TH assumptions: no other decays, SM-like Higgs, etc...

Shanghai 02/07/2017

Higgs physics at LHC – A. Djouadi – p.15/24
3. Further probe of the Higgs sector

Important challenge: measure Higgs self-couplings and access to V_H.

- g_{H^3} from $pp \rightarrow HH + X \Rightarrow$
- g_{H^4} from $pp \rightarrow 3H + X$, hopeless.

Various processes for HH prod:
- only $gg \rightarrow HHX$ relevant...

$\sqrt{s} = 14$ TeV, $M_H = 125$ GeV

$\sigma(pp \rightarrow HH + X)/\sigma_{SM}$

- $gg \rightarrow HH$
- $qq' \rightarrow HHqq'$
- $qq' \rightarrow WHH$
- $qq \rightarrow ZHH$

- $H \rightarrow b\bar{b}$ decay alone not clean
- $H \rightarrow \gamma\gamma$ decay very rare,
- $H \rightarrow \tau\tau$ would be possible?
- $H \rightarrow WW$ not useful?

$bb\tau\tau, bb\gamma\gamma$ viable? Maybe...
but needs very large luminosity.

Baglio et al., arXiv:1212.5581

Shanghai 02/07/2017

Higgs physics at LHC – A. Djouadi – p.16/24
3. Further probe of the Higgs sector

Very precise measurements mostly at $\sqrt{s} \lesssim 500$ GeV and mainly in $e^+e^- \to ZH$ (with $\sigma \propto 1/s$) and ZHH, ttH

g_{HWW}	± 0.012
g_{HZZ}	± 0.012
g_{Hbb}	± 0.022
g_{Hcc}	± 0.037
$g_{H\tau\tau}$	± 0.033
g_{Htt}	± 0.030
λ_{HHH}	± 0.22
M_H	± 0.0004
Γ_H	± 0.061
CP	± 0.038

\Rightarrow best option for ≈ 125 GeV Higgs (see C. Grojean)

But let’s get back to the near future: what can we do at HL-LHC?

Shanghai 02/07/2017 Higgs physics at LHC – A. Djouadi – p.17/24
4. High precision measurements: $D_{\gamma\gamma}$?

Another way to search for New Physics: high precision measurements.
Example: Higgs couplings in cleanest channels: $H \rightarrow \gamma\gamma, H \rightarrow 4\ell^{\pm}$

<table>
<thead>
<tr>
<th>channel</th>
<th>atlas</th>
<th>cms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_{\gamma\gamma}$</td>
<td>1.17 $^{+0.23}{-0.23}$ $^{+0.16}{-0.11}$ ($^{+0.12}_{-0.08}$)</td>
<td>1.14 $^{+0.21}{-0.21}$ $^{+0.16}{-0.10}$ ($^{+0.09}_{-0.05}$)</td>
</tr>
<tr>
<td>$\mu_{\ell\ell}$</td>
<td>1.46 $^{+0.35}{-0.31}$ $^{+0.19}{-0.13}$ ($^{+0.18}_{-0.11}$)</td>
<td>0.93 $^{+0.26}{-0.23}$ $^{+0.13}{-0.09}$</td>
</tr>
</tbody>
</table>

Is this enough to probe effects of new physics or BSM?
Not in the case of weakly interacting theories like 2HDM, SUSY, etc...
expect effects at $\approx \frac{C_{\text{new}}\alpha_W}{\pi} \approx \frac{M_h^2}{M_{\text{new}}^2} \approx 1\%$;

Is 1% accuracy achievable at HL-LHC (3ab$^{-1}$)?

- Statistical error: $20\% / \sqrt{3 \times 100} \lesssim 1-2\%$ (projection OK with ATLAS+CMS combo)
- Systematical error: can be made $\lesssim 1\%$? some errors are common (luminosity, etc....).
- Theoretical uncertainty (if it is $\gg 1\%$): will be then by far the crucial/limiting issue!

⇒ How big is it? Can it be reduced? Removed?

Shanghai 02/07/2017 Higgs physics at LHC – A. Djouadi – p.18/24
4. High precision measurements: $D_{\gamma\gamma}$?

Production cross sections

$gg \rightarrow H$ by far dominant process
$(\approx 85\%$ of the events before cuts$)$
$\Rightarrow O(10\%)$ total TH uncertainty followed by cleaner VBF+VH modes:
only $\lesssim 15\%$ of rate before cuts...
smaller TH error only for inclusive...
$\Rightarrow O(10\%)$ for total uncertainty?

Decay branching ratios

Dominant decay $H \rightarrow b\bar{b} \approx 60\%$
Affected by QCD+parametric errors:
from m_b and α_s only, a few $\%$ \Rightarrow
migrate to $O(5\%)$ error in other modes
such as $H \rightarrow \gamma\gamma, ZZ, WW, \tau\tau$
(partial widths very precise $\lesssim 1\%)$.
\Rightarrow too large theory uncertainties
(even if reduced by a factor of 2)...
4. High precision measurements: $D_{\gamma\gamma}$?

Best way to eliminate theory uncertainty: use ratios of signal rates.

$H \rightarrow VV$ with $V \rightarrow \ell$ as reference and $H \rightarrow XX$ with H produced in p:

$$D_{XX} = \frac{\sigma^p(pp \rightarrow H \rightarrow XX)}{\sigma^p(pp \rightarrow H \rightarrow VV)}$$

$$= \frac{\sigma^p(pp \rightarrow H) \times \text{BR}(H \rightarrow XX)}{\sigma^p(pp \rightarrow H) \times \text{BR}(H \rightarrow VV)}$$

$$= \frac{\text{BR}(H \rightarrow XX)}{\text{BR}(H \rightarrow VV)} = \frac{\Gamma(H \rightarrow XX)}{\Gamma(H \rightarrow VV)}$$

To first approximation: $D_{XX} = c_X^2/c_V^2$

Works only if one selects exactly same kinematical configuration (i.e. same ”fiducial cross sections”) for the two channels X and V!

- the theoretical uncertainties from the cross sections drop out;
- the parametric uncertainties from the branching ratios drop out;
- the theoretical ambiguities in the Higgs total width also drop out;

$\Rightarrow D_{XX}$ measures only the ratio of partial decay widths.

- Extremely clean theoretically, although some information is lost.
- Maybe it has also some advantages from the experimental side?

Best probe by far is $D_{\gamma\gamma}$ which measures deviations of the $\gamma\gamma$ loop

$$D_{\gamma\gamma} = \frac{\sigma(pp \rightarrow H \rightarrow \gamma\gamma)}{\sigma(pp \rightarrow H \rightarrow VV)} = \frac{\Gamma(H \rightarrow \gamma\gamma)}{\Gamma(H \rightarrow VV)} = d_{\gamma\gamma} c_\gamma^2 / c_V^2$$

AD (2012)
4. High precision measurements: $D_{\gamma\gamma}$?

\[\Gamma = \frac{G_\mu}{128 \sqrt{2}} \frac{\alpha^2 M_H^3}{\pi^3} \left| \sum_f N_c e_f^2 A_H^{\frac{1}{2}}(\tau_f) + A_1^H(\tau_W) \right|^2 \]

\[A_{1/2}^H(\tau) = 2[\tau + (\tau - 1)f(\tau)] \tau^{-2} \]
\[A_1^H(\tau) = -[2\tau^2 + 3\tau + 3(2\tau - 1)f(\tau)] \tau^{-2} \]

- Loop decay; SM: only W, top loops are relevant (others small).
- For $m_i \to \infty \Rightarrow A_{1/2} = \frac{4}{3}$ and $A_1 = -7$: W loop dominating!

$\gamma\gamma$ width counts the number of charged particles coupling to Higgs!

Contribution A_p^s of particle p of spin s with Higgs coupling g_{Hpp}:

\[A_0^p = -\frac{1}{3} g_{Hpp}^2 / m_P^2, \quad A_{1/2}^p = +\frac{4}{3} g_{Hpp}^2 / m_P^2, \quad A_1^p = -7 g_{Hpp}^2 / m_P^2, \]

If $g_{Hpp} \propto m_P \Rightarrow A_0^p \to +\frac{1}{3}, A_{1/2}^p \to -\frac{4}{3}, A_1^p \to +7. $

Small/calculated QCD and EW corrections: of order of percent.

AD+Spira+Zerwas, Vicini et al., AD+Gambino, Actis et al., (ZZ: Denner et al.)

In SM with W, t loops: $c_\gamma \approx 1.26 \times |c_W - 0.21c_t|$

Assuming custodial symmetry $g_{HZZ} = g_{HWW} = c_V$, $D_{\gamma\gamma} = c_\gamma^2 / c_V^2$ is

\[c_\gamma^2 / c_V^2 \approx 6.5 \times |1 - \frac{1}{5} c_t / c_V|^2 \]

with $c_V = c_t = 1$ in SM. Any new physics effects will alter this value.
4. High precision measurements: $D_{\gamma\gamma}$?

Will $D_{\gamma\gamma}$ be the g-2 of the LHC? Yes, if measured at 1% level!

Examples in BSM: AD, Quevillon, Vega-Morales, 1509.03913

Model independent search through an effective Lagrangian approach.

$$\mathcal{L} = \frac{H}{v} \left(c_V (2M_W^2 W^+_\mu W^-\mu + M_Z^2 Z_\mu Z^\mu) - m_t \bar{t}(c_t + i\tilde{c}_t \gamma^5)t \right. $$

$$\left. + \frac{c_{\gamma\gamma}}{4} F_{\mu\nu} F^{\mu\nu} + \frac{\tilde{c}_{\gamma\gamma}}{4} \tilde{F}_{\mu\nu} \tilde{F}^{\mu\nu} \right)$$

Shanghai 02/07/2017

Higgs physics at LHC – A. Djouadi – p.22/24
4. High precision measurements: $D_{\gamma\gamma}$?

Will $D_{\gamma\gamma}$ be the g-2 of the LHC? Yes, if measured at 1% level!

Example in MSSM: AD, Ouevillon, Vega-Morales. 1509.03913
5. Conclusion

We need to continue to search for New Physics and falsify the SM:
• directly via new (heavy or light) particle searches with more data.
• indirectly via high precision measurements in H/W/Z/top sectors,

So let’s move forward: it is still action time!
(or as experimentalists usually say: stay tuned!)